API Reference¶
cgcnn2.data
¶
AtomCustomJSONInitializer
¶
Bases: AtomInitializer
Initialize atom feature vectors using a JSON file, which is a python dictionary mapping from element number to a list representing the feature vector of the element.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
elem_embedding_file
|
str
|
The path to the |
required |
Source code in cgcnn2/data.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
__init__(elem_embedding_file)
¶
Initialize atom feature embeddings from a JSON file mapping element numbers to feature vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
elem_embedding_file
|
str
|
Path to a JSON file where keys are element numbers and values are feature vectors. |
required |
Source code in cgcnn2/data.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
AtomInitializer
¶
Base class for initializing the vector representation for atoms.
Use one AtomInitializer
per dataset.
Source code in cgcnn2/data.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
__init__(atom_types)
¶
Initialize the atom types and embedding dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_types
|
set
|
A set of unique atom types in the dataset. |
required |
Source code in cgcnn2/data.py
114 115 116 117 118 119 120 121 122 |
|
decode(idx)
¶
Decode an index to an atom type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
idx
|
int
|
The index to decode. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The decoded atom type. |
Source code in cgcnn2/data.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
get_atom_fea(atom_type)
¶
Get the vector representation for an atom type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_type
|
str
|
The type of atom to get the vector representation for. |
required |
Source code in cgcnn2/data.py
124 125 126 127 128 129 130 131 132 |
|
load_state_dict(state_dict)
¶
Load the state dictionary for the atom initializer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dict
|
dict
|
The state dictionary to load. |
required |
Source code in cgcnn2/data.py
134 135 136 137 138 139 140 141 142 143 144 145 |
|
state_dict()
¶
Get the state dictionary for the atom initializer.
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
The state dictionary. |
Source code in cgcnn2/data.py
147 148 149 150 151 152 153 154 |
|
CIFData
¶
Bases: Dataset
The CIFData dataset is a wrapper for a dataset where the crystal structures are stored in the form of CIF files.
id_prop.csv
: a CSV file with two columns. The first column records a
unique ID for each crystal, and the second column records the value of
target property.
atom_init.json
: a JSON file that stores the initialization vector for each
element.
ID.cif
: a CIF file that records the crystal structure, where ID is the
unique ID for the crystal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root_dir
|
str
|
The path to the root directory of the dataset |
required |
max_num_nbr
|
int
|
The maximum number of neighbors while constructing the crystal graph |
12
|
radius
|
float
|
The cutoff radius for searching neighbors |
8
|
dmin
|
float
|
The minimum distance for constructing GaussianDistance |
0
|
step
|
float
|
The step size for constructing GaussianDistance |
0.2
|
cache_size
|
int | None
|
The size of the lru cache for the dataset. Default is None. |
None
|
random_seed
|
int
|
Random seed for shuffling the dataset |
123
|
Returns:
Name | Type | Description |
---|---|---|
atom_fea |
Tensor
|
shape (n_i, atom_fea_len) |
nbr_fea |
Tensor
|
shape (n_i, M, nbr_fea_len) |
nbr_fea_idx |
LongTensor
|
shape (n_i, M) |
target |
Tensor
|
shape (1, ) |
cif_id |
str or int
|
Unique ID for the crystal |
Source code in cgcnn2/data.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
clear_cache()
¶
Clear the current cache.
Source code in cgcnn2/data.py
270 271 272 273 274 275 |
|
set_cache_size(cache_size)
¶
Change the LRU-cache capacity on the fly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_size
|
int | None
|
The size of the cache to set, None for unlimited size. Default is None. |
required |
Source code in cgcnn2/data.py
258 259 260 261 262 263 264 265 266 267 268 |
|
CIFData_NoTarget
¶
Bases: Dataset
The CIFData_NoTarget dataset is a wrapper for a dataset where the crystal structures are stored in the form of CIF files.
atom_init.json
: a JSON file that stores the initialization vector for each
element.
ID.cif
: a CIF file that records the crystal structure, where ID is the
unique ID for the crystal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root_dir
|
str
|
The path to the root directory of the dataset |
required |
max_num_nbr
|
int
|
The maximum number of neighbors while constructing the crystal graph |
12
|
radius
|
float
|
The cutoff radius for searching neighbors |
8
|
dmin
|
float
|
The minimum distance for constructing GaussianDistance |
0
|
step
|
float
|
The step size for constructing GaussianDistance |
0.2
|
random_seed
|
int
|
Random seed for shuffling the dataset |
123
|
Returns:
Name | Type | Description |
---|---|---|
atom_fea |
Tensor
|
shape (n_i, atom_fea_len) |
nbr_fea |
Tensor
|
shape (n_i, M, nbr_fea_len) |
nbr_fea_idx |
LongTensor
|
shape (n_i, M) |
target |
Tensor
|
shape (1, ) |
cif_id |
str or int
|
Unique ID for the crystal |
Source code in cgcnn2/data.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
GaussianDistance
¶
Expands the distance by Gaussian basis.
Unit: angstrom
Source code in cgcnn2/data.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
__init__(dmin, dmax, step, var=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dmin
|
float
|
Minimum interatomic distance (center of the first Gaussian). |
required |
dmax
|
float
|
Maximum interatomic distance (center of the last Gaussian). |
required |
step
|
float
|
Spacing between consecutive Gaussian centers. |
required |
var
|
float
|
Variance of each Gaussian. If None, defaults to step. |
None
|
Source code in cgcnn2/data.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
expand(distances)
¶
Project each scalar distance onto a set of Gaussian basis functions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
distances
|
ndarray
|
An array of interatomic distances. |
required |
Returns:
Name | Type | Description |
---|---|---|
expanded_distance |
ndarray
|
An array where the last dimension contains the Gaussian basis values for each input distance. |
Source code in cgcnn2/data.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
collate_pool(dataset_list)
¶
Collate a list of data and return a batch for predicting crystal properties.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_list
|
list of tuples
|
List of tuples for each data point. Each tuple contains: |
required |
atom_fea
|
Tensor
|
shape (n_i, atom_fea_len) Atom features for each atom in the crystal |
required |
nbr_fea
|
Tensor
|
shape (n_i, M, nbr_fea_len) Bond features for each atom's M neighbors |
required |
nbr_fea_idx
|
LongTensor
|
shape (n_i, M) Indices of M neighbors of each atom |
required |
target
|
Tensor
|
shape (1, ) Target value for prediction |
required |
Returns:
Name | Type | Description |
---|---|---|
batch_atom_fea |
Tensor
|
shape (N, orig_atom_fea_len) Atom features from atom type |
batch_nbr_fea |
Tensor
|
shape (N, M, nbr_fea_len) Bond features of each atom's M neighbors |
batch_nbr_fea_idx |
LongTensor
|
shape (N, M) Indices of M neighbors of each atom |
crystal_atom_idx |
list of torch.LongTensor
|
length N0 Mapping from the crystal idx to atom idx |
batch_target |
Tensor
|
shape (N, 1) Target value for prediction |
batch_cif_ids |
list of str or int
|
Unique IDs for each crystal |
Source code in cgcnn2/data.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
full_set_split(full_set_dir, train_ratio, valid_ratio, train_force_dir=None, random_seed=0)
¶
Split the full set into train, valid, and test sets into a temporary directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
full_set_dir
|
str
|
The path to the full set |
required |
train_ratio
|
float
|
The ratio of the training set |
required |
valid_ratio
|
float
|
The ratio of the validation set |
required |
train_force_dir
|
str
|
The path to the forced training set. Adding this will no longer keep the original split ratio. |
None
|
random_seed
|
int
|
The random seed for the split |
0
|
Returns:
Name | Type | Description |
---|---|---|
train_dir |
str
|
The path to a temporary directory containing the train set |
valid_dir |
str
|
The path to a temporary directory containing the valid set |
test_dir |
str
|
The path to a temporary directory containing the test set |
Source code in cgcnn2/data.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
cgcnn2.model
¶
ConvLayer
¶
Bases: Module
Convolutional layer for graph data.
Performs a convolutional operation on graphs, updating atom features based on their neighbors.
Source code in cgcnn2/model.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
__init__(atom_fea_len, nbr_fea_len)
¶
Initialize the ConvLayer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_fea_len
|
int
|
Number of atom hidden features. |
required |
nbr_fea_len
|
int
|
Number of bond (neighbor) features. |
required |
Source code in cgcnn2/model.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|
forward(atom_in_fea, nbr_fea, nbr_fea_idx)
¶
Forward pass.
N
: Total number of atoms in the batch
M
: Max number of neighbors
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_in_fea
|
Tensor
|
Tensor of shape |
required |
nbr_fea
|
Tensor
|
Tensor of shape |
required |
nbr_fea_idx
|
LongTensor
|
Tensor of shape |
required |
Returns:
Name | Type | Description |
---|---|---|
atom_out_fea |
Tensor
|
Tensor of shape |
Source code in cgcnn2/model.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
CrystalGraphConvNet
¶
Bases: Module
Create a crystal graph convolutional neural network for predicting total material properties.
Source code in cgcnn2/model.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
__init__(orig_atom_fea_len, nbr_fea_len, atom_fea_len=64, n_conv=3, h_fea_len=128, n_h=1, classification=False)
¶
Initialize CrystalGraphConvNet.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
orig_atom_fea_len
|
int
|
Number of atom features in the input. |
required |
nbr_fea_len
|
int
|
Number of bond features. |
required |
atom_fea_len
|
int
|
Number of hidden atom features in the convolutional layers |
64
|
n_conv
|
int
|
Number of convolutional layers |
3
|
h_fea_len
|
int
|
Number of hidden features after pooling |
128
|
n_h
|
int
|
Number of hidden layers after pooling |
1
|
classification
|
bool
|
Whether to use classification or regression |
False
|
Source code in cgcnn2/model.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
forward(atom_fea, nbr_fea, nbr_fea_idx, crystal_atom_idx)
¶
Forward pass.
N
: Total number of atoms in the batch
M
: Max number of neighbors
N0
: Total number of crystals in the batch
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_fea
|
Tensor
|
Tensor of shape |
required |
nbr_fea
|
Tensor
|
Tensor of shape |
required |
nbr_fea_idx
|
LongTensor
|
Tensor of shape |
required |
crystal_atom_idx
|
list of torch.LongTensor
|
Mapping from the crystal index to atom index. |
required |
Returns:
Name | Type | Description |
---|---|---|
out |
Tensor
|
• |
crys_fea |
Tensor
|
Tensor of shape |
Source code in cgcnn2/model.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
pooling(atom_fea, crystal_atom_idx)
¶
Aggregate atom features into crystal-level features by mean pooling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_fea
|
Tensor
|
Tensor of shape |
required |
crystal_atom_idx
|
list[LongTensor]
|
List of tensors, where |
required |
Returns:
Name | Type | Description |
---|---|---|
mean_fea |
Tensor
|
Tensor of shape |
Source code in cgcnn2/model.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
cgcnn2.utils
¶
Normalizer
¶
Normalizes a PyTorch tensor and allows restoring it later.
This class keeps track of the mean and standard deviation of a tensor and provides methods to normalize and denormalize tensors using these statistics.
Source code in cgcnn2/utils.py
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 |
|
__init__(tensor)
¶
Initialize the Normalizer with a sample tensor to calculate mean and standard deviation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor
|
Tensor
|
Sample tensor to compute mean and standard deviation. |
required |
Source code in cgcnn2/utils.py
808 809 810 811 812 813 814 815 816 |
|
denorm(normed_tensor)
¶
Denormalize a tensor using the stored mean and standard deviation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normed_tensor
|
Tensor
|
Normalized tensor to denormalize. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Denormalized tensor. |
Source code in cgcnn2/utils.py
830 831 832 833 834 835 836 837 838 839 840 |
|
load_state_dict(state_dict)
¶
Loads the mean and standard deviation from a state dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dict
|
dict[str, Tensor]
|
State dictionary containing 'mean' and 'std'. |
required |
Source code in cgcnn2/utils.py
851 852 853 854 855 856 857 858 859 |
|
norm(tensor)
¶
Normalize a tensor using the stored mean and standard deviation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor
|
Tensor
|
Tensor to normalize. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Normalized tensor. |
Source code in cgcnn2/utils.py
818 819 820 821 822 823 824 825 826 827 828 |
|
state_dict()
¶
Returns the state dictionary containing the mean and standard deviation.
Returns:
Type | Description |
---|---|
dict[str, Tensor]
|
dict[str, torch.Tensor]: State dictionary. |
Source code in cgcnn2/utils.py
842 843 844 845 846 847 848 849 |
|
cgcnn_descriptor(model, loader, device, verbose)
¶
This function takes a pre-trained CGCNN model and a dataset, runs inference to generate predictions and features from the last layer, and returns the predictions and features. It is not necessary to have target values for the pred set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The trained CGCNN model. |
required |
loader
|
DataLoader
|
DataLoader for the dataset. |
required |
device
|
str
|
The device ('cuda' or 'cpu') where the model will be run. |
required |
verbose
|
int
|
The verbosity level of the output. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[list[float], list[Tensor]]
|
A tuple containing: - list: Model predictions - list: Crystal features from the last layer |
Notes
This function is intended for use in programmatic downstream analysis, where the user wants to continue downstream analysis using predictions or features (descriptors) generated by the model. For the command-line interface, consider using the cgcnn_pr script instead.
Source code in cgcnn2/utils.py
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
|
cgcnn_pred(model_path, full_set, verbose=101, cuda=False, num_workers=0)
¶
This function takes the path to a pre-trained CGCNN model and a dataset, runs inference to generate predictions, and returns the predictions. It is not necessary to have target values for the pred set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_path
|
str
|
Path to the file containing the pre-trained model parameters. |
required |
full_set
|
str
|
Path to the directory containing all CIF files for the dataset. |
required |
verbose
|
int
|
Verbosity level of the output. |
101
|
cuda
|
bool
|
Whether to use CUDA. |
False
|
num_workers
|
int
|
Number of subprocesses for data loading. |
0
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[list[float], list[Tensor]]
|
A tuple containing: - list: Model predictions - list: Features from the last layer |
Notes
This function is intended for use in programmatic downstream analysis, where the user wants to continue downstream analysis using predictions or features (descriptors) generated by the model. For the command-line interface, consider using the cgcnn_pr script instead.
Source code in cgcnn2/utils.py
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
|
cgcnn_test(model, loader, device, results_file='results.csv', plot_file='parity_plot.png', axis_limits=None, **kwargs)
¶
This function takes a pre-trained CGCNN model and a test dataset, runs inference to generate predictions, creates a parity plot comparing pred versus true values, and writes the results to a CSV file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The pre-trained CGCNN model. |
required |
loader
|
DataLoader
|
DataLoader for the dataset. |
required |
device
|
str
|
The device ('cuda' or 'cpu') where the model will be run. |
required |
results_file
|
str
|
File path for saving results as CSV. |
'results.csv'
|
plot_file
|
str
|
File path for saving the parity plot. |
'parity_plot.png'
|
axis_limits
|
list
|
Limits for x-axis (true values) of the parity plot. |
None
|
**kwargs
|
Any
|
Additional keyword arguments: xlabel (str): x-axis label for the parity plot. ylabel (str): y-axis label for the parity plot. |
{}
|
Notes
This function is intended for use in a command-line interface, providing direct output of results. For programmatic downstream analysis, consider using the API functions instead, i.e. cgcnn_pred and cgcnn_descriptor.
Source code in cgcnn2/utils.py
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
get_local_version()
¶
Retrieves the version of the project from the pyproject.toml file.
Returns:
Name | Type | Description |
---|---|---|
version |
str
|
The version of the project. |
Source code in cgcnn2/utils.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
get_lr(optimizer)
¶
Extracts learning rates from a PyTorch optimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
optimizer
|
Optimizer
|
The PyTorch optimizer to extract learning rates from. |
required |
Returns:
Name | Type | Description |
---|---|---|
learning_rates |
list[float]
|
A list of learning rates for each parameter group. |
Source code in cgcnn2/utils.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
id_prop_gen(cif_dir)
¶
Generates a CSV file containing IDs and properties of CIF files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cif_dir
|
str
|
Directory containing the CIF files. |
required |
Source code in cgcnn2/utils.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
metrics_text(df, metrics=['mae', 'r2'], metrics_precision='3f', unit=None, unit_scale=1.0)
¶
Create a text string containing the metrics and their values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame containing the true and pred values. |
required |
metrics
|
list[str]
|
A list of metrics to be displayed in the plot. |
['mae', 'r2']
|
metrics_precision
|
str
|
Format string for the metrics. |
'3f'
|
unit
|
str | None
|
Unit of the property. |
None
|
unit_scale
|
float
|
Scale factor for the unit. |
1.0
|
Returns: text (str): A text string containing the metrics and their values.
Source code in cgcnn2/utils.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
output_id_gen()
¶
Generates a unique output identifier based on current date and time.
Returns:
Name | Type | Description |
---|---|---|
folder_name |
str
|
A string in format 'output_mmdd_HHMM' for current date/time. |
Source code in cgcnn2/utils.py
91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
plot_convergence(df, xlabel, ylabel, ax=None, y2label=None, ylabel_precision='3f', y2label_precision='3f', colors=('#137DC5', '#BF1922'), xtick_rotation=0, subfigure_label=None, out_png=None)
¶
Create a convergence plot and save it to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame containing the metrics values. |
required |
xlabel
|
str
|
Label for the x-axis (epochs) |
required |
ylabel
|
str
|
Label for the y-axis (metric) |
required |
ax
|
Axes | None
|
Axes object to plot the convergence on. |
None
|
y2label
|
str | None
|
Label for the y2-axis (metric) |
None
|
ylabel_precision
|
str
|
Format string for the y-axis label. |
'3f'
|
y2label_precision
|
str
|
Format string for the y2-axis label. |
'3f'
|
colors
|
Sequence[str]
|
Colors for the lines. |
('#137DC5', '#BF1922')
|
xtick_rotation
|
float
|
Rotation of the x-axis tick labels. |
0
|
subfigure_label
|
str | None
|
Label for the subfigure. |
None
|
out_png
|
str | None
|
Path of the PNG file in which to save the convergence plot. |
None
|
Source code in cgcnn2/utils.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
plot_hexbin(df, xlabel, ylabel, ax=None, metrics=['mae', 'r2'], metrics_precision='3f', unit=None, unit_scale=1.0, subfigure_label=None, out_png=None)
¶
Create a hexbin plot and save it to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame containing the true and pred values. |
required |
xlabel
|
str
|
Label for the x-axis. |
required |
ylabel
|
str
|
Label for the y-axis. |
required |
ax
|
Axes | None
|
Axes object to plot the hexbin on. |
None
|
metrics
|
list[str]
|
A list of strings to be displayed in the plot. |
['mae', 'r2']
|
metrics_precision
|
str
|
Format string for the metrics. |
'3f'
|
unit
|
str | None
|
Unit of the property. |
None
|
unit_scale
|
float
|
Scale factor for the unit. |
1.0
|
subfigure_label
|
str | None
|
Label for the subfigure. |
None
|
out_png
|
str | None
|
Path of the PNG file in which to save the hexbin plot. |
None
|
Source code in cgcnn2/utils.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
plot_scatter(df, xlabel, ylabel, ax=None, true_types=['true_train', 'true_valid', 'true_test'], pred_types=['pred_train', 'pred_valid', 'pred_test'], colors=('#137DC5', '#FACF39', '#BF1922', '#F7E8D3', '#B89FDC', '#0F0C08'), legend_labels=None, metrics=['mae', 'r2'], metrics_precision='3f', unit=None, unit_scale=1.0, subfigure_label=None, out_png=None)
¶
Create a scatter plot and save it to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame containing the true and pred values. |
required |
xlabel
|
str
|
Label for the x-axis. |
required |
ylabel
|
str
|
Label for the y-axis. |
required |
ax
|
Axes | None
|
Axes object to plot the scatter on. |
None
|
true_types
|
list[str]
|
A list of true data types to be displayed in the plot. |
['true_train', 'true_valid', 'true_test']
|
pred_types
|
list[str]
|
A list of pred data types to be displayed in the plot. |
['pred_train', 'pred_valid', 'pred_test']
|
colors
|
Sequence[str]
|
A list of colors to be used for the data types. Default palette is adapted from Looka 2025 with six colors. |
('#137DC5', '#FACF39', '#BF1922', '#F7E8D3', '#B89FDC', '#0F0C08')
|
legend_labels
|
list[str] | None
|
A list of labels for the legend. |
None
|
metrics
|
list[str]
|
Metrics to display in the plot. |
['mae', 'r2']
|
metrics_precision
|
str
|
Format string for the metrics. |
'3f'
|
unit
|
str | None
|
Unit of the property. |
None
|
unit_scale
|
float
|
Scale factor for the unit. |
1.0
|
subfigure_label
|
str | None
|
Label for the subfigure. |
None
|
out_png
|
str | None
|
Path of the PNG file in which to save the scatter plot. |
None
|
Source code in cgcnn2/utils.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
print_checkpoint_info(checkpoint, model_path)
¶
Prints the checkpoint information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
checkpoint
|
dict[str, Any]
|
The checkpoint dictionary. |
required |
model_path
|
str
|
The path to the model file. |
required |
Source code in cgcnn2/utils.py
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
|
seed_everything(seed)
¶
Seeds the random number generators for Python, NumPy, PyTorch, and PyTorch CUDA.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed
|
int
|
The seed value to use for random number generation. |
required |
Source code in cgcnn2/utils.py
887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
|
setup_logging()
¶
Sets up logging for the project.
Source code in cgcnn2/utils.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
unique_structures_clean(dataset_dir, delete_duplicates=False)
¶
Checks for duplicate (structurally equivalent) structures in a directory of CIF files using pymatgen's StructureMatcher and returns the count of unique structures.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_dir
|
str
|
The path to the dataset containing CIF files. |
required |
delete_duplicates
|
bool
|
Whether to delete the duplicate structures. |
False
|
Returns:
Name | Type | Description |
---|---|---|
grouped |
list
|
A list of lists, where each sublist contains structurally equivalent structures. |
Source code in cgcnn2/utils.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
|